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Abstract

Our topic is broadening a practical ”proofs-as-
programs” method of program development to “proofs-as-
processes”. We extend our previous results that imple-
ment proofs-as-processes for the standard model of asyn-
chronous message passing computation to a much wider
class of process models including the π-calculus and other
process algebras. Our first result is a general process
model whose definition in type theory is interesting in it-
self both technically and foundationally. Process terms are
type free lambda-terms. Typed processes are elements of a
co-inductive type. They are higher-order in that they can
take processes as inputs and produce them as outputs.

A second new result is a procedure to generate event
structures over the general process model and then define
event logics and event classes over these structures. Pro-
cesses are abstract realizers for assertions in the event log-
ics over them, and they extend the class of primitively real-
izable propositions built on the propositions-as-types prin-
ciple. They also provide a basis for the third new result,
showing when programmable event classes generate strong
realizers that prevent logical interference as processes are
synthesized.

1 Introduction

1.1 Background

Using a constructive Logic of Events based on Computa-
tional Type Theory (CTT) [CB08, Bic09, ABC06] we have
been able to formally specify safety and liveness proper-
ties for distributed protocols and synthesize executable code
from constructive proofs in NuPrl that the specifications are
realizable [CB08, Bic09]. We have used this proofs-as-
processes method to build fault-tolerant protocols, adaptive
protocols, and provably secure protocols. Recently we have
created versions of Paxos this way.

This system development capability is based on a con-
structive semantics for assertions in our “standard” Logic
of Events using the concept of event structures [Win80,

Win89] which are defined over executions of process in the
standard model of asynchronous message passing computa-
tion. This semantics is expressed in CTT in such a way that
proof terms contain distributed realizers. These realizers are
state machines which can easily be compiled into appropri-
ate programming languages such as Java, Erlang, F#, etc.
Critical to the practical success of this methodology is the
use of programmable event classes [Bic09] to specify com-
puting tasks at a high level of abstraction that can be refined
automatically to processes.

A motivating technical result of this paper is that we
substantially extend this synthesis/verification/development
method so that it applies to a very general notion of process
of the kind used in process algebras (e.g. the higher-order
π-calculus, Petri nets, CCS, CSP, etc.) as well for the stan-
dard process model used in the Logic of Events mentioned
above, e.g. the standard textbook model for systems courses
[AW04, FLP85]. Our generalization enables the synthe-
sis of correct-by-construction processes over a wide variety
of process models by extracting them as distributed real-
izers for specifications in the event logics generated by our
method over these process models. Thus processes are auto-
matically generated from constructive proofs that high-level
event-based specifications are achievable and then compiled
into a standard programming language. In due course we
will execute them directly in the proof system itself be-
cause our general process model is elementary enough to
be taken both as logically foundational and practically im-
plementable. Moreover our test bed theorem prover, NuPrl,
is a distributed system with an evaluation subsystem into
which these process can be incorporated along with their
corresponding operating environment.

A second technical result of this paper is that because
our general process model is more abstract than the model
used in the standard Logic of Events, it can directly sup-
port event classes and the key concept of a programmable
event class. This allows us to move the entire development
methodology and Logic of Events to a more abstract level,
and that becomes critical in synthesizing complex protocols
in a timely manner and decomposing their development into
meaningful layers. A key practical advantage of this more
abstract approach is that when we are developing a protocol
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such as Paxos, we are creating a large number of variations
depending on the way the proof is refined. This diversity is
very useful in practice.

Our first new result is the general process model itself;
it is both an extremely general and remarkably simple and
can simulate process algebras as well as the standard model.
We focus on the π-calculus to illustrate this generality. The
higher-order process terms are type free lambda terms built
with the Y combinator. The processes that can be typed
belong to a co-inductive type we call Processes. In the
case of Computational Type Theory (CTT) [ABC06], the
co-inductive type can in fact be defined using intersection
over a family of types, and we give the definition here, an-
other small new result. These process terms are sufficiently
elementary to serve as new computational primitives in type
theories built on the propositions-as-types principle such as
the Calculus of Inductive Constructions (CIC), CTT, and
ITT . We show that they are components of a new class of
distributed realizers, thus enriching the expressiveness of
these theories. Moreover, as a related aside we note that
the definable co-inductive type constructor can be used to
express new propositions such as those built with infinitary
operators.

2 Overview and Example

We begin with an overview of our model of distributed
computation and the concepts we use to reason about them.
All the italicized nouns will be formalized in CTT in the
next section.

A system consists of a set of components. Each compo-
nent has a location, an internal part, and an external part.
Locations are just abstract identifiers. There may be more
than one component with the same location.

The internal part of a component is a process—its pro-
gram and internal (hidden) state. The external part of a
component is its interface with the rest of the system. In
this paper, this interface will be a list of messages, contain-
ing either data or a process, labeled with the location of
the recipient. The “higher order” ability to send a message
containing a process allows a system to grow by “forking”
or “bootstrapping” new components. (The external part can
also be used to model the shared memory accessible to com-
ponents at the same location, but will not be discussed in
this paper.)

A system computes in steps as follows. In each step, the
environment may choose and remove a message from the
external part of a component. If components exist at the
location to which the message is addressed, each of them
receives the message as input and computes a pair consist-
ing of a process, which becomes the next internal part of the
component, and a list of messages, which is appended to the
current external part of the component. If the chosen mes-

sage is addressed to a location that is not yet in the system,
then a boot process creates a new component at that loca-
tion. The boot process to be used is supplied as a system
parameter.

An infinite sequence of steps, starting from a given sys-
tem and using a given boot-process, is a run of that system.
From a run of a system we derive an abstraction of its be-
havior by focusing on the events in the run. The events are
the pairs, 〈x, n〉, of a location and a step (a “point in space-
time”) at which location x gets an input message at step
n (i.e.“information is transferred”). Every event has a lo-
cation, and there is a natural causal-ordering on the set of
events, the ordering first considered by Lamport [Lam78].
This allows us to define an event-ordering, a structure,
〈E, loc, <, info〉, in which the causal ordering < is tran-
sitive relation on E that is well-founded, and locally-finite
(each event has only finitely many predecessors). Also, the
events at a given location are totally ordered by <. The in-
formation, info(e), associated with event e is the message
input to loc(e) when the event occurred.

We have found that requirements for distributed sys-
tems can be expressed as (higher-order) logical propositions
about event-orderings. To illustrate this and motivate the re-
sults in the rest of the paper we present a simple example of
leader election in a group of processes arranged in a ring.

Example 1. Leader election in a ring

Each participating component will be a member of some
groups and each group has a name, G. A message 〈G, j〉
from the environment to component i informs it that it is in
group G and has neighbor j in group G. We assume that, by
the time the protocol begins, each such group is a ring, that
is, the graph of the relation j = neighbor(G, i) is a simple
cycle. When any component in a group G receive a mes-
sage 〈[elect ], G〉 it starts the leader election protocol whose
goal is to choose one member of group G to be the leader
and inform every member of G of the location of the leader
(presumably as the first step in a more complex protocol).
To make this easy we also assume that each component at
location i has a unique identifier uid(i) that is a number—
so that the uid’s can be ordered.

The simple protocol is this: every component that re-
ceives a start message proposes itself by sending, to its
neighbor, its uid in a message with header propose. Every
component that receives a proposal with a uid, p, different
than its own uid, u, proposes the maximum, max(u, p) to
its neighbor. A component i that receives its own uid in a
proposal is the leader and so sends a message with its loca-
tion, i, and header leader . Every component other than the
leader that receives a leader message forwards the message
to its neighbor.

We describe protocols like this by classifying the events
in the protocol. In this protocol there are the start events,
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the propose events and the leader events. The components
can recognize events in each of these classes (in this exam-
ple they all have distinctive headers) and they can associate
information with each event (e.g. the group G, the proposed
uid, the location of the leader). Events in some classes cause
events with related information content in other classes.

In general, an event class X is function on events in
an event ordering that partitions the events into two sets,
E(X) and E − E(X), and assigns a value X(e) to events
e ∈ E(X). In our example, let us suppose that the list
xs contains the locations of all the components that are
participating in the protocol and might be members of the
groups. An event e that is the receipt of a start message
〈[elect ], G〉 at a location i ∈ xs is a member of an event
class Start , with value Start(e) = G. Such classes, de-
fined by a list of locations and a particular message header,
are the basic event classes. Likewise, we may define ba-
sic classes Propose and Leader with values of the form
Propose(e) = 〈G, p〉 and Leader(e) = 〈G, x〉. When
an event in any of these basic classes occurs, the receiv-
ing component, at location i ∈ xs , will be able to associate
additional pieces of information with the event, such as its
uid(i), or its location i, or neighbor(G, i) from the most re-
cent message from the environment. As we will see below,
this allows us to derive recognizable event classes Start+,
Propose+, and Leader+ that assign values as follows:

Start+(e) = 〈G, uid(i), j〉
Propose+(e) = 〈G, p, i, uid(i), j〉
Leader+(e) = 〈G, x, i, j〉

where i = loc(e), j = neighbor(G, i)

To describe the leader election protocol in terms of these
event classes, we declare that every event e with Start+(e)
= 〈G, uid , j〉 causes an event e′ with location j and value
Propose(e′) = 〈G, uid〉. Every event e with Propose+(e)
= 〈G, p, i, uid , j〉 for which p 6= uid causes an event e′ with
location j and value Propose(e′) = 〈G,max(p, uid)〉. Ev-
ery event e with Propose+(e) = 〈G, p, i, uid , j〉 for which
p = uid causes an event e′ with location j and value
Leader(e′) = 〈G, i〉. Every event e with Leader+(e) =
〈G, x, i, j〉 for which x 6= i causes an event e′ with location
j and value Leader(e′) = 〈G, x〉.

Clearly, these constraints (and the assumption that group
G forms a ring) imply that after a Start event, the member
max ∈ G with the maximum uidmax must eventually pro-
pose uidmax and this will be proposed by all members of
the group, until component max receives its own uidmax.
It will then cause a Leader -event with value 〈G, max〉 at its
neighbor and this will be forwarded around the ring, so ev-
ery member of the group is informed of the location max.
The formal proof of these statements is easily constructed
using standard logical methods. (If we want to be sure that

all Leader -events for G have the same value, then we also
need constraints that say that Propose and Leader events
are caused only by the above rules.)

The general form of the algorithm in this example and
many other distributed algorithms is this: A component rec-
ognizes some basic event. It associates additional informa-
tion, which it computes as a function of its prior input his-
tory, with the basic event. As a function of this information
it computes a new message and a list of recipients and sends
the message to each of them, causing more basic events. We
describe the part of the algorithm that recognizes events and
associates additional information with them as components
that recognize a general programmable event class. We de-
scribe the part of the algorithm that sends the information
to other components in term of propagation rules and prop-
agation constraints.

Propagation rules and constraints If A and B are event
classes, the propagation rule A

f⇒ B@g is a proposition
about event orderings saying that for every A-event with
value v, there is a B-event, with value f(v), causally after
it, at each location x ∈ g(v). We require that distinct A-
events cause distinct B-events. Formally,

∀x : Loc. ∃p : {e : E(A)|x ∈ g(A(e))}
→ {e′ : E(B@x)|loc(e′) = x}.

injection(p) ∧
∀e :E(A). e < p(e) ∧ B(p(e)) = f(A(e))

where injection(p) asserts that that the function p is one-to-
one.

The propagation constraint A
f⇐ B@g is the

same proposition, but with injection(p) replaced by
surjection(p). This says that every B-event “comes from”
and appropriate A-event.

We can express our leader election protocol as a conjunc-
tion of propagation rules and constraints. For instance, two
of the propagation rules are:

Start+ f⇒ Propose@g, where

f(〈G, uid , j〉) = 〈G, uid〉, g(〈G, uid , j〉) = [j]

Leader+ f⇒ Leader@g, where

f(〈G, x, i, j〉) = 〈G, x〉
g(〈G, x, i, j〉) = if x = i then nil else [j]

If ψ is a proposition about event orderings, we say that a
system realizes ψ, if the event-ordering of any run of the
system satisfies ψ. We extend the “proofs-as-programs”
paradigm to “proofs-as-processes“ for distributed comput-
ing by making constructive proofs that requirements are re-
alizable. For compositional reasoning, it is desirable to cre-
ate, when possible, a strong realizer of requirement ψ—a
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system that realizes ψ in any context. Formally, system S
is a strong realizer of ψ if the event-ordering of any run of
a system S′ such that S ⊆ S′, satisfies ψ. If S1 is a strong
realizer of ψ1 and S2 is a strong realizer of ψ2, then S1∪S2

is a strong realizer of ψ1 ∧ ψ2.
One of our main results is that propagation rules like

those used in the leader election example have strong re-

alizers. A realizer for a propagation rule A
f⇒ B@g is a

set of components. Using a (computable) function of the
history of inputs at its location, each of these components
recognizes, and computes the value v of, events in class A
that occur there. Whenever such events occur, the compo-
nent send messages that will eventually result in an events
in class B with value f(v) at each location in g(v). We
call the classes A that can be so recognized, programmable.
Basic event classes are programmable, and the set of pro-
grammable event classes is closed under a variety of combi-
nators. Thus, many classes can be automatically shown to
be programmable, and their recognizers generated automat-
ically. If B is a basic class and if we have reliable message
delivery, then a component may cause an event in B by
placing a message with an appropriate header on its exter-
nal part. A rule, A ⇒ B is programmable-basic (PB) if A is
programmable and B is basic. Thus, under the assumption
of reliable message delivery, every PB-rule is realizable.

Reliable message delivery is an assumption about the en-
vironment. In this case, the assumption is a fairness as-
sumption on the choices the environment makes. It states
that all messages in the external part of a component will
eventually be chosen. One weakening of this assumption
allows some components to suffer send omission faults. Un-
der this assumption, parameterized by a set of locations, F ,
called the fail-set, every message on the external part of a
component whose location is not in F , will eventually be
delivered.

If send omissions are allowed, not every PB-rule is re-
alizable, but the restricted rule A|(¬F ) ⇒ B is realizable,
when A ⇒ B is PB, and A|(¬F ) is the class of A-events
whose location is not in the fail-set. A fault-tolerant proto-
col like Paxos can be described by such restricted rules, and
proved correct under appropriate assumptions on the size of
the fail-set.

A PB-rule A ⇒ B is also strongly realizable. This is
because, essentially by definition, class A is programmable
only if there is a system S that recognizes A-events in any
context. So in a run of system, S′, with S ⊆ S′, the compo-
nents in S will still recognize A-events. Also, if the fairness
assumption is sufficient to guarantee that basic B events
will occur, then the addition of extra components will not
interfere with this, either.

Unfortunately, some desirable properties of protocols
like leader election do not follow from conjunctions of PB-
rules alone. We also need some propagation constraints, of

the form A
f⇐ B@g. A realizer constructed for A

f⇒ B@g
will generate B-events only from A-events, so it will also

realize A
f⇐ B@g. But it will not necessarily be a strong

realizer of the propagation constraint because, in an un-
restricted larger system, other components may cause B-
events.

Strong realizers will always compose to strong realizers.
We can compose (nonstrong) realizers for propagation rules
and propagation constraints if we can show that they do not
“interfere” with one another. For example, the realizers for
A ⇒ B will trivially realize C ⇐ D if classes B and D
are disjoint; and that can be trivially guaranteed if classes
B and D are basic classes distinguished by different “mes-
sage headers.” That simple design rule reduces the proof of
noninterference to a “compatibility check” that the message
headers used by different rules are different.

Because a verified system may run in an environment
that includes unverified, untrusted code for which we can-
not perform the compatibility check, it would be desirable
to make the verified system be a strong realizer for a con-
junction of propagation rules and propagation constraints.
A method that modifies a group of components in a realizer
so that they form a strong realizer is to have them encrypt
their messages with a shared key.

3 Formalization

All the concepts in the overview are formalized as types.
In this paper we present mainly the definitions and state-
ments of results, and merely sketch the proofs, which have
all have been carried out in NuPrl.

Primitives We use the notation [x, . . . , z] for finite lists,
L1 ⊕ L2 for the result of appending list L1 to list L2, and
nil for the empty list. Functions fst and snd access the
components of pairs, which we write 〈x, y〉. The members
of a disjoint union A+B are {inl(a)|a ∈ A}∪{inr(b)|b ∈
B} where inl and inr are primitive constructors. The only
member of type Unit is () and we write inr(()) =⊥.

Locations The type that represents locations is a primi-
tive type Loc ≡def Atom . The members of the atom type
are abstract “tokens” that have no structure and can only be
tested for equality. We also use atoms as headers or tags on
data or messages.

Data We want to allow any reasonable values as data in
messages, e.g. integers, strings, booleans, tuples, records,
lists, etc. For simplicity, we merely parameterize our defi-
nitions with a type parameter T that represents the type of
all data values. In applications, we can use a type like T =
tg :Atom ×M(tg) where M is a function Atom → Type.
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Then a data value is a pair 〈tg , v〉 where tg is an atom and v
is a member of type M(tg). For any particular application
we can name all the relevant types of data values. In the
rest of this document, the parameter T represents the type
of data values. All of our definitions will include parameter
T , so to save space T will be implicit.

Components, Systems, and Computation Since, in this
paper, we are not modeling state shared among components
at the same location, the external part of a component is
simply a list of labeled messages. A component is a triple of
a location, a process, and an external part, and a system is a
list of components. So, in terms of the process and message
types, Process and Msg , discussed below, we define:

Ext ≡def (Loc ×Msg) List
Component ≡def Loc × Process × Ext

System ≡def Component List

When component 〈x, P, ext〉 gets input message m it
will become 〈x, P ′, ext ⊕ ext ′〉 where 〈P ′, ext′〉 = P (m).
For this to be well defined we need the types Process and
Msg to satisfy the following subtype relation:

Process ⊆ Msg → (Process × Ext)

This says that a process is a function that accepts an input
message and produce a pair, a process and an external part.

Finite objects, such as lists, can be constructed as mem-
bers of inductive (recursive) types, but processes are a kind
of “infinite stream” and such objects are members of a co-
inductive type. In NuPrl’s CTT, we can define co-inductive
types using the intersection type constructor.

A term is a member of an intersection of a family of
types if it is a member of each type, and two terms repre-
sent the same member the intersection, if they represent the
same member of each type. In particular, all terms represent
the same member of the intersection of an empty family,
Top ≡def

⋂
x : Void Void , and a function of type Top → T

must be a constant function. (Terms in NuPrl do not have
a single “best” type—for example, 17 ∈ N, 17 ∈ Top, and
17 ∈ {m : N|m > 5}.)

Co-inductive types are defined, for F ∈ Type → Type,
F 0(T ) = T , and F k+1(T ) = F (F k(T )), by

corec(P.F (P )) ≡def

⋂

k : N
F k(Top)

Types A and B are extensionally equal, written A ≡ B,
if they have the same members, i.e. if A ⊆ B and B ⊆ A.
A type function F is continuous if for any sequence of types
X ∈ N→ Type,

⋂

k

F (X(k)) ≡ F (
⋂

k

X(k))

Function F is weakly continuous if
⋂

k

F (X(k)) ⊆ F (
⋂

k

X(k))

If F is weakly continuous then

corec(P.F (P )) ⊆ F (corec(P.F (P )))

Messages and Processes We want “higher-order” pro-
cesses that can input and output messages that contain pro-
cesses, so we define the types of processes and messages
simultaneously. According to our computation model, a
process is a function that can accept an input message and
produce a new process (possibly updating its internal state)
and an external part (to be appended to its current external
part). External parts (in this paper) contain only a list of out-
put messages, labeled with their recipient. The body of an
input message will be either data or a process, so we define1

M(P ) ≡def (Atom List)× (T + P )
E(P ) ≡def (Loc ×M(P )) List
F (P ) = M(P ) → (P × E(P ))

It is easy to show that M and E are continuous type func-
tions and that F is weakly continuous2.

This implies that if we define

Process ≡def corec(P.F (P ))
Msg ≡def M(Process)
Ext ≡def E(Process)

then

Process ⊆ F (Process) = Msg → Process × Ext

Building Processes There is a standard way to construct
a process, embodied in the following recursive definition:

Definition 1.

RecPr(next , ext , s) =rec

λm. let 〈s′, e〉 = next(s, m) in

let P = RecPr(next , ext , s′) in

〈P, ext(e,m, P )〉
The parameter s in RecPr(next , s) is the internal state

of the process, and next is its program. On input m the
process uses its program to compute a new internal state s′

and an external part e and “becomes” the process P with
the new internal state. It can put process P into the external
part by using the function ext . To build processes that never
add themselves to messages we write just RecPr(next , s)
and supply the default ext(e,m, P ) = e.

1Recall that U + V is the disjoint union of types U and V
2Because P occurs on the lefthand side of the arrow in the function

type, F is not continuous.
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Lemma 1. Suppose that S is a continuous type function,
and let F ′(T ) ≡def M(T ) → (S(T )× E(T ))

If
s ∈ S(Process)
ext ∈ ⋂

T . E(T ) → M(T ) → T → E(T )
next ∈ ⋂

T . S(F (T )) → F ′(T )
then RecPr(next , ext , s) ∈ Process

Proof. We claim that

∀k. ∀st : S(F k(Top)). RecPr(next , ext , st) ∈ F k(Top)

We prove this by induction on k; the base case is triv-
ial. Let T = F k(Top), assume that st ∈ S(F (T ))
and m ∈ M(T ), and let 〈s′, e〉 = next(st , m). Then
s′ ∈ S(T ) and e ∈ E(T ). Thus, by induction, P =
RecPr(next , ext , s′) ∈ T . So, ext(e,m, P ) ∈ E(T ). This
shows that RecPr(next , ext , st) ∈ F (T ) and completes the
inductive proof of the claim. Because S is continuous,

s ∈ S(Process) = S(
⋂

k

F k(Top)) ⊆
⋂

k

F (F k(Top))

Hence, by the claim, for any k, RecPr(next , ext , s) ∈
F k(Top), so

RecPr(next , ext , s) ∈
⋂

k

F k(Top) = Process ¤

Axillary definitions Messages are pairs of a “header”, a
list of atoms, and a “body” that is either data or a process.
For constructing and manipulating messages, we define

pmsg(hdr , P ) ≡def 〈hdr , inr(P )〉
header(m) ≡def fst(m)

body(m) ≡def snd(m)
rmheader(m) ≡def 〈tail(header(m)), body(m)〉

addheader(k, m) ≡def 〈cons(k, header(m)), body(m)〉

We define the iteration of a process on a list of messages
by recursion on the list:

P ∗(nil) = 〈P,nil〉
P ∗(L⊕ [m]) = let 〈P ′, ext〉 = P ∗(L) in P ′(m)

So P ∗(L) is the pair consisting of the resulting process and
the last external part that was produced.

Example 2. A bootstrap process.

To illustrate the use of lemma 1, we make a bootstrap
process, boot , that has an internal state of type Process +
Unit . Initially it will have state⊥ and the first time it gets a

process message, pmsg(hdr , Q), it will change its internal
state to inl(Q). After that, it behaves like the process in its
internal state, by passing its inputs to the internal process
and using the resulting external part as its own. Thus,

boot ≡def RecPr(next ,⊥) where

next(⊥,m) = 〈G(m), nil〉 where

G(m) = if m = pmsg(hdr , Q)
then inl(Q) else ⊥

next(inl(Q),m) = let 〈Q′, e〉 = Q(m)
in 〈inl(Q′), e〉

The internal state has type S(Process) where S(T ) = T +
Unit , so S is continuous. It is easy to see that the given
function, next , has the polymorphic type given in lemma 1.
So, boot is a process. We can use this process as the default
boot-process in the run of a system.

Example 3. A “forkable” process.

For a given function f of type Msg → (Loc ×
Atom List)?, we can define a process, forkable(P, f),
that interprets a message m with f(m) = inl(x, hdr) as
the instruction send itself to location x in a message with
header hdr , but otherwise acts like a given process P . By
Lemma 1, the following defines the desired process:

forkable(P, f) ≡def RecPr(next , ext , P ) where

next(P, m) = P (m)
ext(e,m, P ) = if f(m) = inl(x, hdr)

then [〈x, pmsg(hdr , P )〉)]
else e

Environment and Runs The environment chooses which
messages will be delivered, and that is the only non-
determinism in the model. We use the type Choice = N×N
to represent the choices made by the environment. Then
〈i, k〉 ∈ Choice represents the choice of the kth message on
the external part of the ith component, if there is such a mes-
sage, and no message otherwise. A run is determined by the
initial system S, a boot-process boot and an environment
env ∈ N → Choice, an infinite sequence of choices. The
run is the infinite sequence of pairs (in System × Choice)
defined by Run(S, boot , env) ≡def λn.F (n), where

F (n) =rec if n = 0 then 〈S, env(0)〉
else 〈Next(F (n− 1), boot), env(n)〉

The detailed definition of Next(〈Sn, choicen〉, boot) is
straightforward and has been formalized in NuPrl. The
boot-process boot is used to initialize a new component that
is created when a message containing a process is delivered
to a new location.

We call this formal model of distributed computation the
general process model .
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4 Event-orderings and realizers

We are now ready to define for any run, R, a structure
EO+(R) = 〈E, loc, <, info〉 called the (extended) event-
ordering of the run. This is an abstraction of the observable
behavior of a distributed system. Extended event-orderings
can also be derived from other process models.

In the event ordering derived from our model, the events
are the pairs, e = 〈x, n〉, at which location x gets a an input
message at step n—this defines the type ER of events in the
run. Note that equality on ER is decidable. The location
loc(e) of event e is its first component, and info(e) is the
input message it received.

Event e1 = 〈x, n〉 is the local predecessor of e2 =
〈y,m〉 if x = y and n < m and there are events 〈x, k〉
with n < k < m. Event e1 = 〈x, n〉 is an immediate pre-
decessor of e2 = 〈y, m〉 if it is either the local predecessor
of e2 or if a message for y was taken from a component at
location x in step m, and e1 was the most recent prior event
at location x. The causal ordering < is, by definition, the
transitive closure of the immediate-predecessor relation.

We formalized the details in NuPrl and proved that <
is well-founded, transitive, locally-finite, decidable, and
a total ordering of events at the same location. We call
a structure 〈E, loc, <〉 that satisfies these properties (and
has decidable equality) an event-ordering. An event or-
dering is an abstract model of causality and location in
“space-time”. The extended event ordering adds the infor-
mation function λe. info(e) so that events are associated
with some primitive information content. We define the
type, EventOrdering+, of extended event-orderings in ap-
pendix A using the dependent record type defined in NuPrl.

A less general model of distributed computing, called
message automata 3, that we have been using for several
years, gives rise to what we call an event-structure—similar
to an event-ordering but with additional structure and ax-
ioms4. We have made many definitional extensions and
proved many properties of event-structures and used them to
specify and prove properties of distributed algorithms such
as leader-election, consensus, and authentication protocols.
We recently “re-factored” our theory of event-structures to
see how many of the results held for the more general event-
orderings defined above. We found that over 1200 lemmas
in our library could be re-proved using only the properties
of an event-ordering.

Event history Some definitional extensions of (extended)
event-orderings that we will need in the sequel are:

3In particular, they are not “higher order” and reliable, FIFO, message
delivery is built-in, which makes specifications that allow faulty behavior
trickier.

4For example, event structures include operations x when e and
x after e for observing state variables before and after events, and an
axiom ¬first(e) ⇒ (x when e = x after pred(e))

• first(e) A boolean, true iff e is the first event at its
location.

• pred(e) An event (provided ¬first(e)), the local im-
mediate predecessor of e.

• history(e) A Msg List , defined recursively by

(if first(e) then nil else history(pred(e)))⊕ [info(e)]

the list of all inputs up to and including the one re-
ceived at event e.

Such expressions are defined in the context of an event or-
dering eo ∈ EventOrdering+, so they include eo as an im-
plicit parameter. To make this explicit we sometimes write,
e.g., historyeo(e), loceo(e), etc.

4.1 Event classes

To structure our specifications of distributed systems and
our reasoning about them, we introduce the concept of an
event class. An event class X is function on events that
partitions the events into two sets, E(X) and E − E(X),
and assigns a value X(e) to events e ∈ E(X).

We can choose to assign a type to each event class, a
type to which the value of all its events must belong, but for
simplicity, in this paper all event classes will assign values
of type Msg . Since the body of a message has type T +
(m : N×Processm), and since the data type T is assumed to
be sufficiently universal, we can put whatever information
we need into a member of type Msg .

Therefore we define:

EClass ≡def eo : EventOrdering+ → E(eo) → Msg?

where Msg? ≡def (Msg + Unit). This says that an event
class X is really a function of both an event ordering and an
event in that ordering. It decides whether the event is in the
class and if so produces a message.

Basic event classes If k ∈ Atom we say that event e has
kind k if head(header(info(e))) = k. Then, if xs is a list
of locations,

Kind(k, xs) ≡def λeo.λe.if loceo(e) 6∈ xs then ⊥
if head(header(infoeo(e))) 6= k then ⊥
else inl(rmheader(infoeo(e)))

is an event class such that E(Kind(k, xs)) are the events
of kind k whose location is in xs , and Kind(k, xs)(e) is
rmheader(info(e)). We call the classes Kind(k, xs) the
basic event classes.

Example 4. Consensus specification
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If propose and decide are atoms, and xs lists the lo-
cations of the components in a consensus protocol, let
P = Kind(propose, xs) and D = Kind(decide, xs). Then
the specification of a consensus protocol is the conjunction
of two propositions on (extended) event-orderings, called
agreement (all decision events have the same value) and va-
lidity (the value decided on must be one of the values pro-
posed):

∀e1, e2 :E(D). D(e1) = D(e2)
∀e :E(D). ∃e′ :E(P ). e′ < e ∧ D(e) = P (e′)

Simple combinators If X1, . . . , Xn are event classes,
and F ∈ Msg?n → Msg?, then

F̂ (X1, . . . , Xn) ≡def λeo.λe. F (X1(eo, e), . . . , Xn(eo, e))

is an event class. When F is strict, F (⊥, . . . ,⊥) =⊥, then
we call F̂ a simple combinator5.

The “prime” combinator If X is an event class, the class
(X)′ is the class which contains those events for which an
earlier event at the same location was in class X (call this
a locally-prior X-event). The value assigned to an event in
(X)′ is the value if the most recent locally prior X-event.
Formally,

e ∈ E(X ′) ⇔ ∃e′ : E(X). loc(e′) = loc(e) ∧ e′ < e

e ∈ E(X ′) ⇒ X ′(e) = X(the most recent such e′)

Recursion combinators

Lemma 2. If X1, . . . , Xn are event classes, and H ∈
Msg?n+1 → Msg? then there is a unique class Z such that
Z = Ĥ((Z)′, X1, . . . , Xn)

Proof. The equation Z = Ĥ((Z)′, X1, . . . , Xn) is a recur-
sive definition of Z. Using the well-foundedness of <, it
can be shown to be well defined. Uniqueness is also proved
by induction on <.

We write Ĥ((self )′, X1, . . . , Xn) for the Z defined in
lemma 2.

Example 5. Accumulators

Distributed algorithms usually require a participating
component to maintain state information that is a func-
tion of the inputs the component has seen. In the leader
election example, we suppose that there is a class of input

5If F is not strict, F (⊥, . . . ,⊥) = inl(m), for some message
m. Then, any event e not in any of E(X1), . . . , E(Xn) would be in
E(F (X1, . . . , Xn)) and have value m. This would make it difficult to
recognize such events, since they could occur at any location.

events e ∈ Neighbor , where some function f of the value
Neighbor(e) is a pair 〈G, j〉, and this informs the compo-
nent at loc(e) that its neighbor in G is j. Each component
i must maintain a table of such neighbor information, and
this is a function of the history of Neighbor inputs it re-
ceives. We represent such accumulated state information as
the value of an event class defined using the recursion com-
binator. For example the table of neighbors is the value of
the following class:

NbrTab ≡def Ĥ((self )′,Neighbor),where

H(⊥,m) = [f(m)]
H(tabl ,m) = let 〈G, j〉 = f(m) in tabl [G := j]

(Actually, because all event classes have values of type
Msg , we would “code” the values in the definition above
into messages.) By using “accumulators” like this, we can
describe the behavior of distributed algorithms without in-
troducing state variables. This allows us to specify “imple-
mentations” abstractly.

4.2 Programmable event classes

Specifying an implementation abstractly is of little use
if there is no reliable path from the abstract implementa-
tion to running, correct, code. Fortunately, all of the event
classes we have discussed are programmable, which means
that they can be recognized by a system of (computable)
component processes. Because of this, we will be able to
automatically construct a realizer (see section 5) for our ab-
stract implementation.

Definition 2. Let X be an event class. Component
〈x, P, ext0〉 recognizes X-events at x if for any event e with
loc(e) = x,

snd(P ∗(history(e))) =
if e ∈ E(X) then [〈x,X(e)〉] else nil

A system S recognizes event class X if there is one com-
ponent in S at each location where X-events may occur,
and it recognizes the X-events at that location. Class X is
programmable if there is a system S that recognizes it.

Theorem 3. A basic class Kind(k, xs) is programmable.
If X1, . . . , Xn are programmable classes, and
F ∈ Msg?n → Msg? is strict, and
H ∈ Msg?n+1 → Msg? is strict, then

1. F̂ (X1, . . . , Xn) is programmable.

2. (Xi)′ is programmable.

3. Ĥ((self )′, X1, . . . , Xn) is programmable.
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The constructive proof of theorem 3 is in appendix B.
The program derived from the constructive proof of this the-
orem provides the core of a compiler for a language6 that al-
lows programmers to define combinators, basic classes, and
classes composed from these.

5 Realizability

To limit the number of parameters, let’s fix a boot-
process, boot , say the one in example 2. A run R of sys-
tem S has the form Run(S, boot , env) for some env ∈
N → Choice. We say that the event ordering EO+(R)
of a run of S is an ordering consistent with S. Most re-
quirements for a distributed system can be expressed as con-
straints ψ(eo) on the event-orderings consistent with it (ψ
has type EventOrdering+ → P). For example, the agree-
ment and validity requirements for a consensus protocol
(example 4) have this form. Generalizing the “proofs-as-
programs” paradigm we view a system as evidence that such
requirements are realizable. Usually, we assume some con-
ditions about the environments (e.g. a fairness condition).
So, if S is a system, and C is a proposition on environments,
we define

“S realizes ψ”
S `C ψ ⇔ ∀env . C(env) ⇒

ψ(EO+(Run(S, boot , env)))
“ψ is realizable”
`C ψ ⇔ ∃S. S `C ψ

“S strongly realizes ψ”
S ²C ψ ⇔ ∀S′. S ⊆ S′ ⇒ S′ `C ψ

“ψ is strongly realizable”
²C ψ ⇔ ∃S. S ²C ψ

Realizability is not a useful concept unless it can be used
in compositional reasoning. From a realizer of ψ1 and a
realizer of ψ2 there must be an “easy” way to construct a
realizer for ψ1 ∧ ψ2. Clearly, if S1 ²C ψ1 and S2 ²C ψ2

then S1⊕S2 ²C ψ1 ∧ ψ2. Also, if φ ⇒ ψ and S ²C φ then
S ²C ψ. So, strong realizers allow compositional, logical
refinement

if ((
∧

i

φi) ⇒ ψ) and (∀i. ²C φi) then ²C ψ

If property φ does not have a strong realizer, then for
each realizer S, such that S `C φ, there should at least be
an “easily provable” compatibility test PS(S′) such that

∀S′.(PS(S′) ⇒ S ⊕ S′ `C φ

6We have implemented a prototype called E#.

Then if (
∧

i φi ⇒ ψ) and (∀i. Si `C φi) then
⋃

i Si `C ψ
provided all of the pairwise compatibility relations PSi

(Sj)
are true.

6 Realizers for propagation rules

The rule A
f⇒ B@g is programmable-basic (PB) if A is

programmable and B is basic. Assuming reliable message

delivery, we show that A
f⇒ B@g is strongly realizable.

The definition of a fairness condition, φrmd , on environ-
ments that implies reliable message delivery is straightfor-
ward. The external parts of the components in a system
are the messages that are in-transit, and, at each step in the
run, the environment chooses which in-transit message will
be delivered. The condition φrmd says that every message
in-transit will eventually be delivered—we omit the formal
definition to save space. If we want to allow send omission
faults, then we modify φrmd to φrmd(F ) that says every
message in-transit from a component with a location not in
the fail-set F will eventually be delivered.

Theorem 4. If event class A is programmable, B =
Kind(k, xs) is basic, and range(g) ⊆ xs , then

²φrmd
A

f⇒ B@g

Proof. Since A is programmable there is a system S0 that
recognizes A-events. We simply modify each component of
S0 (at a location z) so that instead of producing [〈z,A(e)〉] it
produces map(λx. 〈x, addheader(k, f(A(e)))〉, g(A(e))).

That the modified system S strongly realizes A
f⇒ B@g

follows easily from the assumption φrmd .

The strong realizer S for A
f⇒ B@g constructed in

the proof of theorem 4 is also a realizer (but not a strong

realizer) for A
f⇐ B@g because S generates B-events

only when it has recognized an A-event. Since it is not
a strong realizer, we must provide a compatibility test PS

such that PS(S′) ⇒ S ⊕ S′ `φrmd
(A

f⇐ B@g). Be-
cause the basic B-events all have header k, the compatibil-
ity test PS(S′) can be avoids(k, S′)—S′ does not generate
any messages with header k. If S′ is the realizer of an-

other PB-rule, C
f⇒ D@g, then it is easy to check whether

avoids(k, S′)—check whether the header for basic class D
differs from k.

Private names All of the preceding results have been
proved using the NuPrl theorem prover, but the ideas in this
paragraph are speculative.

It is not clear that it is always easy to prove avoids(k, S′)
for systems S′ that are not derived from theorem 4. Also,
we may want to run a verified, correct-by-construction, sys-
tem S in an environment that includes untrusted code. For
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these reasons, we would like to construct a strong realizer
for the propagation constraint A ⇐ B. This can be done
by using techniques from nominal logic or the π-calculus
to provide a set of components with a shared, fresh, private
name which they may use as a header on messages.

We structure a system into a list of groups of compo-
nents, each group having the form private k.S(k) where
S is a (sub)system with a free name parameter k. A run of
such a system would begin by initializing each group with a
freshly generated name. Then, computation would proceed
as before except that, if the message chosen in a step has
a header that is the private name of a group, it is delivered
only to components in that group (even though there may
be other components at the recipient location). Using this
mechanism we can construct strong realizers for constraints
like A ⇐ B provided that the definition of the basic class B
is Kind(k, xs) for a free parameter k (rather than a specific
constant).

We do not need to add any nominal binders to our
logic—the propagation rules and propagation constraints
have the same formal definitions as before. The “nominal”
techniques are used only in the construction of the realizers,
and allow us to build strong realizers for the propagation
constraints. An implementation of such realizers has to
enforce the semantics of the private names. A plausible
mechanism to do this is to use the shared name as an en-
cryption key. For such names k the addheader(k, m) oper-
ation is really encryptk(m) and the rmheader(m) is really
if encryptedk(m) then decryptk(m) else rmheader(m).

7 Modeling the π-calculus

We informally describe an encoding of the π-calculus in
the general process model. Filling in the details is straight-
forward (and has been done formally in NuPrl). We use the
formulation of monadic π-calculus in which all sums are
guarded, so the syntax of a π-calculus process term is:

P ::= 0 | Σn
i=1πi.Pi | P |Q | !P | (νx)P

where n > 0 and a prefix πi is either the “get” operation
c(x) or the “put” operation c x. We will model the basic
π-calculus semantics that does not require communications
to be chosen “fairly.”

Several basic differences between π-calculus and the
general process model must be negotiated. The notion of
location, fundamental in the general process model, doesn’t
exist in π-calculus. In the general process model, a process
sends a message to a known recipient by labeling the mes-
sage with the recipient’s location, whereas a π-calculus pro-
cess sends a message to a channel without knowing which
other processes might be reading from it. The general pro-
cess model is asynchronous and processes can act only on

local knowledge; whereas in π-calculus, communication is
synchronous and rendezvous are effected by the environ-
ment, using global information. Finally, a process in the
general process model is purely reactive; it acts only in re-
sponse to an input. A π-calculus process is active at least
in the sense that it can, for example, “fork” replicas or ini-
tiate a communication (though an act of the environment is
needed for communications to complete).

From now on, “process” refers to a process in the sense
of the general process model. “Target processes” will
encode π-calculus process terms and “bookkeeping pro-
cesses” will be added to manage and constrain their interac-
tions.

7.1 Communication

It seems appealing, at first glance, to encode a channel
as a process, but π-calculus semantics requires global deci-
sions to determine what communications occur; the general
process model has no built-in magic to make such global
decisions.

Instead, we introduce a central bookkeeping process
Comm, at location lcomm , that manages all communication.
A π-calculus term that can immediately engage in commu-
nications has the form π1.P1 + . . . + πn.Pn A process at
location l that encodes this term will send to Comm a mes-
sage containing l (the return address) and the sequence of
possible communications. That is, it will place

[lcomm : 〈l, [π1, . . . , πn]〉]

on its external part.7 The process will block until it receives
a reply from Comm.

Comm accumulates these requests (its state can be
thought of as a partial function from locations to lists of
prefixes), decides which communications will occur (once
it has chosen one prefix from the request 〈l, ~π〉 it deletes
that request from its state) and carries them out by sending
appropriate messages to the processes requesting the “get”
and the corresponding “put.”

The list of πi could contain repetitions—e.g., the process
could be c(x).P + c(x).Q, so that the corresponding Reqs
is 〈l, [c(x), c(x)]〉. Comm’s replies must therefore contain
both a return value (or acknowledgement) and the index of
the request chosen. In this case it would send to location l
a message of the form 〈v, 1〉 or 〈v, 2〉. The process at l will
use the index to determine whether to continue as P or as
Q.

The decisions about which communications occur must
be made nonderministically from the full range of possi-
bilities. In the general process model, however, processes

7This is slightly loose, since a process does not have an external part;
only a component does.
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must be deterministic—nondeterminism comes only from
the environment. The trick for making Comm determinis-
tic is simple: Introduce an additional bookkeeping process,
Choose. When Comm wants to make a choice from some
list of possibilities it sends each element of the list, in a
separate message, to Choose. The environment will deter-
mine which of those messages reaches Choose first. Choose
returns to Comm the first one it receives and ignores the
others. Since Choose must make repeated choices, without
being confused by old messages that the environment deliv-
ers belatedly, we must introduce some additional state into
both Comm and Choose to do the bookkeeping (or create a
new instance of Choose to handle each choice). Those de-
tails are straightforward; one version of them can be found
at www.nuprl.org/documents/Guaspari/picalculus.html.

7.2 Encoding π-calculus terms and programs

If P is a π-calculus process term, we will define

[[P ]] : Loc → Process
M(P ) : System

For any location l, [[P ]](l) will represent the behavior of P if
it is “installed” at location l. M(P ) is a system whose runs
simulate the executions of P as a stand-alone π-calculus
program. One component of the systemM(P ) will be con-
structed from [[P ]] and the others will contain bookeeping
processes.

For readability, we’ll write [[P ]](l) as [[P ]]l. These target
processes will have certain features in common:

• Each responds to a special message, called fire, that
“activates” it. Processes in the general process model
are purely reactive and this will provide a uniform way
to create a system that, once set in motion, can keep
going.

• Each communicates only with itself (to which it can
send a fire message) and with three bookkeeping pro-
cesses: Comm; the location server LServer; and the
name server NServer.

Informally, we will describe [[P ]] in terms of primitive oper-
ations that “get a (globally) new location” and “get a (glob-
ally) new name.” Formally, these primitives will be imple-
mented by sending a message to one of these servers and
getting the location or name in reply.

Strictly speaking LServer is a function that outputs loca-
tion servers (and NServer is analogous). If L is a finite set of
locations, then LServer(L) is a process that, in response to
an input returns a message with a name that differs from any
location in L and any location it has previously returned.

The base case [[0]]l is the null process.

Guarded choice [[π1.P1 + . . . + πn.Pn]]l is the process
that on receiving the fire message returns

〈Q, [lcomm : 〈l, [π1 . . . , πn]〉]〉
That is, it sends a request to Comm and becomes process Q,
which acts as follows: wait for a response 〈v, i〉 from Comm
and then return

〈Pi, [l : fire]〉
That is, it becomes process Pi and tells Pi to fire. The
definition of Pi depends on πi. If, for example, πi = c(x),

Pi = [[Pi[x := v]]]l

where “[x := v]” denotes substitution of v for x.

Replication and parallel composition The obvious way
to encode parallel composition or replication is to create
new sub-processes. Thus, [[P |Q]]l responds to its fire mes-
sage by obtaining new locations l1 and l2 from the location
server and sending to these locations, respectively, mes-
sages containing the processes [[P ]]l1 and [[Q]]l2 . The ef-
fect of such “process messages” depends on the boot pro-
cess to be applied. If we use the default boot process
the newly installed processes will not be “active” because
they’re waiting for the fire message. Thus we must both
install them and send the activation messages. It will not
suffice to have [[P |Q]]l send both the processes and the acti-
vation messages—for there is no guarantee that either pro-
cess will be installed before the fire message arrives.

The solution we choose is to introduce a fancier boot
process, boot+, that creates a component containing not the
process in the message, but the result of applying that pro-
cess to the message fire (and whose external part is initial-
ized to the messages that result). It is a simple modification
of the boot process defined in section 2.

Replication is just a variant of parallel composition. In
response to a fire message the process [[!P ]]l will obtain a
new location l1, install [[P ]]l1 there, and resend the fire mes-
sage to itself (which enables it, when the message is deliv-
ered, to install further models of P at other locations).

The ν operator [[(νx)P ]]l responds to its fire message by
obtaining a globally fresh name n, becoming the process
[[P [x := n]]]l and telling itself to fire.

7.3 Simulating a π-calculus program

If P is a π-calculus process term, the system M(P )
models execution of P as a stand-alone program. Let N be
the set of all names occurring in P and choose five distinct
locations: lcomm , lC , lN , lL, and l. M(P ) consists of the
following five components, together with the boot process
boot+.
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• 〈lcomm ,Comm,nil〉

• 〈lC ,Choose,nil〉

• 〈lN ,NServer(N),nil〉

• 〈lL,LServer({lC , lcomm , lN , lL, l0}),nil〉

• 〈l, [[P ]]l(fire)〉

Our semantic model of P as a stand-alone program is the
collection of all runs of M(P ) under the assumption of re-
liable message delivery. That assumption ensures that the
model makes progress when it should. It ensures, for exam-
ple, that a run ofM(!P ) will do more than fork off replicas
of P—the replicas themselves will also have a chance to act
because their requests for communication will be delivered.

8 Related Work

Event Structures We built on the work of Winskel
[Win80, Win89] and Lamport [Lam78] when we designed
and implemented the “standard” Logic of Events in 2005
around the notion of event structures. Instead of reasoning
about a conflict primitive we reason about logical interfer-
ence. The book of Abraham [Abr99] also confirmed the
importance of event structures, expressed as Tarksi mod-
els. Although his methods are classical, we found we could
do the proofs constructively as a basis for synthesis. We
were also influenced by a long term collaboration with Bir-
man and van Renesse e.g. [LKvR+99] who use an informal
logic of events in discussions with us. Our work was expe-
dited by the ease of building our first standard models using
IO Automata [Lyn96] and expressing our realizers as IOA.
However, we also wanted to compose realizers and intro-
duced frame conditions to enable us to reason about logical
interference. In the standard Logic of Events we define tem-
poral operators in the spirit of [Pnueli81], but they are not
the main vocabulary of expression, nor are the modal oper-
ators of process logics [HKP82, HM85].

Process Synthesis The value of writing abstract specifica-
tions was made especially clear by Vardi [Vardi95], Smith
and Green [SG96], and by Meseguer and Winkler [MW92].
Lately we were encouraged by the results of Murphy, Crary,
and Harper [MCH04] for distributed but not concurrent
computing. Their modal lambda calculus also illustrates ab-
stract realizers based on propositions-as-types.

Proofs-as-Processes The methodology of proofs-as-
programs [BC85] has proven effective in functional and
procedural programming, and has gained momentum as can

be seen from some contemporary examples of verified pro-
gramming [BB08, WMM09, XL09]. The work of Abram-
sky [Abr94] suggested what constructive results were possi-
ble using linear logic, but we were not able to build practi-
cal synthesis methods grounded in his logic nor in Pratt’s
use of it [Pratt91]. We were led to our standard event
logic by working on the verification of deployed practical
distributed systems [LKvR+99] and looking at other ab-
stract theoretical approaches, e.g. Abstract State Machines
[BG03a, GGV04] which are closer to the standard model
[AW04, FLP85].

Process Models and Mobility Robin Milner’s work on
processes has been part of our background in thinking about
concurrency since CCS, the pi-calculus, and now Bigraphs
[Mil89, Mil09]. Connecting his work to other abstract mod-
els such as Abstract State Machines [BG03a, GGV04] was
a motivation for our general process model, in particular
we were keen to capture mobility using the ability to send
processes in messages. We obtain the mechanisms of the
π-calculus for mobility as well.
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A Appendix: Definition of EventOrdering
type

The definition of a type for event-orderings illustrates a
useful piece of type theory.
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A.1 Dependent record types

If A ∈ Type, and B ∈ A → Type, then the dependent
intersection x :A∩B(x) is also a type [Kop03]. A term t is
a member of type x : A ∩B(x) if t ∈ A and t ∈ B(t). This
definition makes sense because when t ∈ A, then B(t) ∈
Type. The dependent intersection allows a certain kind of
“self reference”, so we often use the variable self as the
bound variable and write the type as self :A ∩B(self ).

We use this type to define dependent record types as fol-
lows. Define the type T ; z : B[self ] to be

self : T ∩ (x : Atom → if x = z then B[self ] else Top)

If r is a member this type, then r ∈ T and also, r is a func-
tion from labels (atoms) to values such that r(z) ∈ B(r).
So, if we define record-selection r.z as application r(z),
we have r.z ∈ B(r). We start with type Top and iter-
ate the record type constructor to build arbitrary dependent
records. We write Top; x : A as simply x : A, so that a type
like Top; x :A; z :B[self .x] is written x : A; z : B[self .x]. If
r ∈ x : A; z : B[self .x] then r.x ∈ A and r.z ∈ B(r.x).

A.2 Mathematical Structures as Types

To represent a structure 〈A, . . . , f, . . . , R, . . . 〉 with
some sorts A . . . , functions f . . . , and relations R . . . , we
make a dependent record type, Struct, like:

A : Type;
. . . ;
f : self .A → self .A;
. . . ;
R : self .A → self .A → P
. . .

So, the sorts become types, the functions are “methods”
whose type depends on the sorts, and relations are functions
from the sorts to propositions.

In CTT, propositions are types, so to represent a struc-
ture as above that also satisfies axioms ψ1(A, . . . , f ,
. . . , R, . . . ), . . . , ψn(A, . . . , f, . . . , R, . . . ), we merely add
the axioms to the record:

Struct;
ax1 : ψ1(self .A, . . . , self .f, . . . , self .R, . . . );
. . . ;
axn : ψn(self .A, . . . , self .f, . . . , self .R, . . . )

An event-ordering is a structure 〈E, loc, <〉 that satisfies
six axioms stating that equality is decidable, and that <
is well-founded, transitive, locally-finite, decidable, and a
total ordering of events at the same location. The type

EventOrdering ≡def

E : Type;
< : self .E → self .E → P;
loc : self .E → Loc;
deq : ∀e1, e2 : self .E. (e1 = e2) ∨ (e1 6= e2);
wf : ∃f : self .E → N. ∀e1, e2 : self .E.

(e1 self . < e2) ⇒ (f(e1) < f(e2));
dco : ∀e1, e2 : self .E.

(e1 self . < e2) ∨ ¬(e1 self . < e2);
trans : ∀e1, e2, e3 : self .E.

((e1 self . < e2) ∧ (e2 self . < e3))
⇒ (e1 self . < e3);

fin : ∀e : self .E. ∃L : self .E List .
∀e′ : self .E. (e′ self . < e) ⇒ (e′ ∈ L);

total : ∀e1, e2 : self .E.

self .loc(e1) = self .loc(e2) ⇒
(e1 = e2) ∨ (e1 self . < e2) ∨ (e2 self . < e1)

Figure 1. Definition of EventOrdering

EventOrdering is defined in figure 1. An extended event-
ordering adds the operation info(e), so its type is

EventOrdering+ ≡def

EventOrdering ;
info : self .E → Msg

B Appendix: Proof of Theorem 3

B.1 Parallel and sequential composition

Processes in separate components of a system operate in
parallel, but to prove that the programmable event classes
are closed under the simple and recursive combinators, it is
useful to encapsulate the parallel composition of processes
within a single component. This is easily done. Suppose
Ps = [P1 . . . Pk] is a list of processes. We can define a new
process that starts with Ps as its internal state. When it get
an input message, it passes it to each of the processes in its
internal state, who each compute new internal and external
parts. The new external part is then some combination F of
the external parts of the internal state. The diagram in fig-
ure 2 is similar to a hardware circuit, but since the inner pro-
cesses are “higher order” they could be “re-programmed”
by sending them process messages. The formal definition
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of the parallel composition is:

Par(Ps, F ) ≡def RecPr(next ,Ps) where

next(Ps) = λm. let Pes ′ = map(λP. P (m),Ps) in

〈(map(fst ,Pes ′), F (map(snd ,Ps ′))〉

Similarly, we can define a sequential composition as in

P1

P2

P3 ext3

ext2

ext1

extms
F

Figure 2. Parallel composition of processes

figure 3. In the sequential case, the input to the second box
Q is an external part rather than a message, so Q ∈ Process ′

where Process ′ ⊆ Ext → (Process ′ × Ext). A useful
instance of this is the “buffer”

Q(s) =rec λext . let s′ = if null(ext) then s else ext
in 〈Q(s′), s′〉

In this case the sequential composition of P and Q “remem-
bers” the last non-null external part produced by P .

extms P Q-

Figure 3. Sequential composition of pro-
cesses

Lemma 5. A basic class Kind(k, xs) is programmable.

Proof. Make a system with one component at each location
x ∈ xs . The component has a “stateless” process that act as
follows: If its input message has kind k, then it removes k
from the header and puts the message into its external part,
and otherwise makes the external part empty.

To prove the rest of Theorem 3 we must show that if
X1, . . . , Xn are programmable classes, and F ∈ Msg?n →
Msg? is strict, and H ∈ Msg?n+1 → Msg? is strict, then

1. F̂ (X1, . . . , Xn) is programmable.

P1

P2

P3 ext3

ext2

ext1

extms
F Buffer

Figure 4. Parallel/Sequential composition
with feedback

2. (Xi)′ is programmable.

3. Ĥ((self )′, X1, . . . , Xn) is programmable.

Proof. Each Xi = Class(Si) for some system Si.

1. We make a system that recognizes F̂ (X1, . . . , Xn) as
follows: At each location x in the union of the sys-
tems, Si, we pick the component Cx

i at location x
from Si (and supply a “null component” if Si does
not have a component at x). Then we make the list
Ps = map(snd , [Cx

1 , . . . , Cx
n]), the process of each

component, and use this as the internal state of the par-
allel composition operator from section B.1, shown in
figure 2. From this we make a combined component
Cx

comb and the resulting system of combined compo-
nents does the job.

2. To make the system for (X)′ from the system for X ,
we use the sequential composition operator, shown in
figure 3, with the second, Q, box being the “buffer”
process mentioned in example B.1.

3. To recognize Ĥ((self )′, X1, . . . , Xn), we combine the
methods used in the previous two cases. The pro-
cess construction uses a combination of parallel and
sequential composition that results in the “circuit” with
feedback, shown in figure 4.
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